Abstract

AbstractIt is shown that during low-temperature (300–500 K) intercalation of sodium atoms into thin multilayer graphene and graphite films on rhenium the first graphene layer plays the role of a trap to which atoms coming on the surface diffuse through a graphite film. The intercalation phase of the interlayer space in the graphite bulk is actively filled at a sodium atoms concentration under the first graphene layer close to the maximum possible (2 ± 0.5) × 10^14 cm^–2. This phase capacity is proportional to the graphite film thickness that can be varied in this work from one graphene layer to ~50 atomic layers. The diffusion energy E _ d of Na atoms through the graphite film was estimated to be E _ d ≈ 1.4 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.