Abstract

Butterflies have been known to suck viscous liquids through a long, cylindrical proboscis using the large pressure difference formulated by the cyclic expansion and contraction of a muscular pump located inside their head. However, there are few studies on the liquid-feeding phenomena in a live butterfly, because it is hard to observe the internal morphological structures under in vivo condition. In this study, the dynamic motion of the pump system in a butterfly was in vivo visualized using synchrotron X-ray micro-imaging technique to analyze the liquid-feeding mechanism. The period of the liquid-feeding process is about 0.3sec. The expansion stage is about two times larger than the contraction stage in one cycle. The cyclic variation of pump volume generate large negative suction pressure and the pressure difference inside the long proboscis of a butterfly is estimated to be larger than 1atm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.