Abstract

Recently, general purpose graphic processing units(GPUs) are being widely used in mobile embedded systems such as smart phone and tablet PCs. Because of architectural limitations of mobile GPGPUs, only a single program is allowed to occupy a GPU at a time in a non-preemptive way. As a result, it is difficult to meet performance requirements of applications such as frame rate or response time if applications running on a GPU are not scheduled properly. To tackle this difficulty, we propose to specify applications using synchronous data flow model of computation such that applications are formed with edges and nodes. Then nodes of applications are scheduled onto a GPU unlike conventional scheduling an application as a whole. This approach allows applications to share a GPU at a finer granularity, node (or task)-level, providing several benefits such as eliminating need for manually partitioning applications and better GPU utilization. Furthermore, any scheduling policy can be applied in response to the characteristics of applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.