Abstract

The creation of markers that provide both visual and quantitative information is of considerable importance for the mapping of tissue macrophages and other cells. We synthesized magnetic and magneto-fluorescent nanomarkers for the labeling of cells which can be detected with high sensitivity by the magnetic particle quantification (MPQ) technique. For stabilization under physiological conditions, the markers were coated with a dense silica shell. In this case, the size and zeta-potential of nanoparticles were controlled by a modified Stober reaction. Also, we developed a novel facile two-step synthesis of carboxylic acid-functionalized magnetic SiO2 nanoparticles, with a carboxyl polymer shell forming on the nanoparticles before the initiation of the Stober reaction. We extensively characterized the nanomarkers by transmission electron microscopy, electron microdiffraction, and dynamic and electrophoretic light scattering. We also studied the nanoparticle cellular uptake by various eukaryotic cell lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.