Abstract

Manufacturing of the bipolar plate of a direct methanol fuel cell (DMFC) by direct laser melting technology (DLM) was attempted. The DLM technology is highly influenced by process parameters such as laser power, scan rate and layering height. Therefore, an analysis of the DLM technology was performed under various conditions. The bipolar plates were fabricated using the DLM process with 316L stainless steel (STS 316L) plates and powder. Powder melting trials at various energy density were performed in order to select a feasible melting range for a given laser power. The melting line height increases and eventually saturates when the energy density increases, but decreases when the laser power increases at a given energy density. For the estimation of the potential performance of the bipolar plate, the surface roughness and contact resistance of the DLM layer were also analyzed. The changes of line height and thickness are useful information to report when manufacturing bipolar plate of fuel cell through the DLM process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call