Abstract

A longitudinal modal transmission-line theory(L-MTLT) to analyze the static and dynamic behavior of two-section distributed feedback (DFB) lasers is used. The characteristic impedance and equivalent propagation constant of DFB structure with active layer are derived from L-MTLT. A two-section DFB laser is analogous to a transmission-line network, in which each section is described by transmission-line block corresponding to the equivalent factors. The longitudinal resonant condition of DFB laser based on equivalent transmission-line network is used to reformulate the rate equations so that static and dynamic behavior of two-section DFB lasers with active layer is demonstrated and analyzed accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.