Abstract

The asymmetric pulsed DC reactive magnetron sputtering system is widely used for the high quality plasma sputtering process such as a thin film deposition. In asymmetric pulsed DC power supply a reverse voltage is applied to the target periodically to minimize arc discharging effect. When sputtering in the mid-frequency range (20-350 kHz), the periodic target voltage reversals suppress arc formation at the target and provide long-term process stability. Thus, high quality, defect-free coatings of these materials can now be deposited at competitive rates. In this paper, a new style asymmetric pulsed DC power supply including mid-transformer is presented. In the proposed, an energy recovery circuit is adopted to reduce the mutual inductance of the transformer. As a result, the system dynamics of the voltage control loop is increased highly and the non-linear voltage boosting effect of the conventional system is removed. This work was proved through simulation and laboratory based experimental study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.