Abstract

AbstractThe mechanism of the vapor–solid–solid growth of Au-catalyzed GaAs nanowires in the temperature range of 420–450°C is investigated. For the first time, the effect of elastic stresses caused by a difference in the atomic densities of the catalyst and nanowire material on the solid-phase nucleation rate is considered. By assuming that the growth of the GaAs nucleus at the catalyst–nanowire interface is limited by the As-diffusion flux in the catalyst, it is shown that vapor–solid–solid growth can be implemented through the polycentric-nucleation mode in the temperature range under consideration. The intensity of the nucleation of coherent islands upon vapor–solid–solid growth is shown to be higher than the intensity of nucleation in the case of vapor–liquid–solid growth because a low interphase surface energy is implemented at coherent solid–solid conjugation. It is proved that the nucleation of Au-catalyzed GaAs nanowires by the vapor–solid–solid mechanism is possible only when GaAs-island growth proceeds due to As diffusion along the catalyst–nanowire interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.