Abstract

Acoustic performance of splitter silencers was investigated by using 3-dimensional commercial software and experiments. Flow resistivity of sound absorbing material was indirectly estimated by using an impedance tube setup and a curve fitting method. In addition the acoustic impedance of perforated plate was determined by an empirical formulation. Such properties have been used as input parameters in the commercial software. The prediction for a splitter silencer with 1000 mm length was compared with the experimental result. The numerical method is then applied to identify the effects of number of splitters, length of splitters, absorptive material density, and porosity of a perforated plate on the performance of the splitter silencers. As the number and length of splitter increases, the acoustic performance significantly increases. Although the increase of density of absorptive material also increase the acoustic performance, a change in the density over a certain level hardly affect it. The increase of porosity will enhance the performance especially at higher frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call