Abstract
최근 방위 산업에는 장비가 군에서 요구한 임무를 완수하기 위해 장비 설계, 운용, 그리고 정비 측면에서 많은 연구가 이루어지고 있다. 그 중 동시조달수리부속은 장비가 군에 납품될 때 함께 들어가는 수리부속으로써, 이것을 분석하는 것은 장비의 운용가용도를 높이는데 가장 중요한 부분 중 하나이다. 그러나 이렇게 중요한 동시조달수리부속이지만 현실적 개발 환경을 고려한 공학적 분석 방법 발전 보다는 정책적인 방법으로 해결해 나가고 있는 실정이다. 그래서 본 연구에서는 동시조달수리부속 최적화를 위해 시뮬레이션과 다중 회귀모형 기법을 활용한 공학적 분석을 연구하였다. 먼저, 시뮬레이션 기법을 이용하여 가상으로 운용해보면서 정의된 보급 및 정비체계를 분석하고 이를 통해 품목별 동시조달수리부속의 수량을 변화에 따른 운용가용도의 변화 추이를 결과 자료로 산출하였다. 이렇게 얻은 입출력 자료를 통해 수리적 다중 회귀모형을 도출 후 선형계획법을 사용하여 동시조달수리부속 최적화를 하였다. 이때 최적화는 단가 제약을 두었다. 이 방법의 가장 큰 장점은 최적화 선정시 기준이 되는 제약조건의 변화에 빠르게 대응할 수 있다. 장비의 개발 단계에서는 품목별 단가는 지속적으로 바뀌기 마련이다. 이런 환경에서 제약조건이 바뀔 때 마다 시뮬레이션 분석을 재 수행하면 분석 속도가 늦어질 수밖에 없다. 그러므로 본 방법은 실제 개발 환경에 적합한 것이라 할 수 있다. 향후 이런 기본 개념을 바탕으로 시뮬레이션 모델링을 정밀화하고, 회귀모형의 정확성을 높여 연구의 완성도를 높일 것이다. Recently, the study in efficient operation, maintenance, and equipment-design have been growing rapidly in military industry to meet the required missions. Through out these studies, the importance of Concurrent Spare Parts(CSP) are emphasized. The CSP, which is critical to the operation and maintenance to enhance the availability, is offered together when a equipment is delivered. Despite its significance, th responsibility for determining the range and depth of CSP are done from administrative decision rather than engineering analysis. The purpose of the paper is to optimize the number of CSP per item using simulation and multiple regression. First, the result, as the change of operational availability, was gained from changing the number of change in simulation model. Second, mathematical regression was computed from the input and output data, and the number of CSP was optimized by multiple regression and linear programming; the constraint condition is the cost for optimization. The advantage of this study is to respond with the transition of constraint condition quickly. The cost per item is consistently altered in the development state of equipment. The speed of analysis, that simulation method is continuously performed whenever constraint condition is repeatedly altered, would be down. Therefore, this study is suitable for real development environment. In the future, the study based on the above concept improves the accuracy of optimization by the technical progress of multiple regression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.