Abstract

A structural approach was attempted to estimate rigid ion contributions to pyroelectric coefficients, employing atomic position vectors determined in the least-squares refinement of a polar mineral, cancrinite. The two sets of positions, obtained from the centers of gravity (centroids) and modes of asymmetric probability density functions (pdf) of atoms, were applied to calculate electric polarizations, whose temperature derivatives may correspond to the rigid ion contributions to the pyroelectric coefficient, γ(σ), normally measured under the condition of constant stresses and to the secondary pyroelectric coefficients, γ(2), respectively. The primary pyroelectric coefficient γ(ε) was given as the difference γ(σ)-γ(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.