Abstract

The article discusses the ways of rational use of hydrocarbon raw materials in order to obtain isoparaffin and aromatic hydrocarbons. The possibilities of joint processing of the 75-100°C fraction have been studied from gas condensate and propane-butane fraction (PBF) in an anhydrous environment and in the presence of a modified zeolite-containing catalyst. The regularities of the yield of aromatic and isoparaffinic hydrocarbons of the anhydrous process of catalytic conversion of combined hydrocarbon raw materials on a zeolite-containing Pt/Beta catalyst modified by 0.5% wt have been established platinum. So, when converting a fraction of 75-100°C. With a temperature range of 300-350°C, the content of isoparaffins in liquid products increases by more than 20% by weight. A further increase in temperature is accompanied to a greater extent by the formation of aromatic hydrocarbons. The total content of benzene, toluene, xylenes is about 20% by weight. Similar trends are observed when testing the propane-butane fraction. The greatest increase in isoparaffin hydrocarbons is also observed at a temperature of 300°C. Their content in liquid and gaseous products increases by an average of 10%. The main share in this process is accounted for by iso-butane. Accordingly, an increase in the reaction temperature by 100°C increases the formation of benzene and toluene by 11% by weight. More significant results were obtained during the joint transformation of the 75-100°C fraction and the propane-butane fraction. At a reaction temperature of 300°C, a high content of iso-butane is observed in gaseous products, which allows them to be involved in petrochemical processes. The content of isoparaffins in liquid products increases by 50% by weight, which makes them valuable as a high-octane component of motor fuels. Favorable temperatures for the production of aromatic hydrocarbons are 400°C and above.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.