Abstract

The importance of research into enhancing the metal mining technologies is justified by the declining availability of mineral resources due to non-compliance of the conventional mining methods with the market conditions. The traditional ore processing technologies are accompanied by accumulation of processing tailings. Zero-waste recycling of primary processing waste, which is often used without extracting metals to match the sanitary standards, is not evolving. The acute environmental issues are primarily exacerbated by a lack of levers for centralized accounting and management of the accumulated waste. The aim of the study is to develop new technologies that are optimized in terms of complete utilization of the off-grade raw materials i.e. wastes from primary ore processing. The effectiveness of leaching technologies is proved with a complex method that involves experiments and calculations comparing the performance of processing options using the Box-Behnken design of metal extraction and interpreting the results in the form of logarithmic or polynomial interpolation. Quantitative values were obtained and cross-plots of metal extraction dependence on the contributing factors were made, which allow characterizing the leaching processes of polymetals and ferruginous quartzites in the disintegrator. It has been proved that mechanochemical treatment provides higher metal yield (up to 45%) than traditional waste processing technologies while securing a safety level that meets the sanitary requirements. It has also been determined that disintegrator activation during the metal leaching process increases the strength of concrete mixtures based on re-treated tailings, both as aggregates and as a binder. A conclusion is made that activation of the leaching processes in a disintegrator ensures the extraction of 50 to 80% of metals that are not available for extraction from mill tailing with conventional technologies. Development of man-made deposits using innovative technologies based on metal leaching is a real step towards expanding the mineral resource base of the metallurgical industry and improving the environmental situation in the mining regions. In contrast to technologies of a similar scope and purpose, the proposed technology makes it possible to process ores in a zero-waste manner without creating new tailings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call