Abstract

The term "inertioid" and its first design in 1936 was invented by engineer V. N. Tolchin. Despite the demonstration of unsupported motion using a physical model, the mystery of the inertioid has existed for almost a century. There are several theories explaining the motion of the inertioid (or mechanisms with inertial motion). These theories include the theory of friction, which proves that the movement of the device occurs due to the difference between the coefficients of friction and the coefficients of rolling resistance in contact between the bottom of the machine and the road. In some works, to explain the physical nature of this phenomenon, it is often legitimate to use A. Einstein's theory of relativity from a scientific point of view. In our opinion, the approach to the study of the process of motion of the inertioid should be based on the theory of the gravitational field. In the theory of relativity, A. Einstein notes that rapidly moving frames of reference create their own gravitational fields. Rotating weights create their own potential fields, since they are affected by centripetal accelerations. When the field of rotating loads is imposed on the gravitational field of the earth, accelerations appear that cause the movement of an inertioid (machines with an inertial mover). In fact, we constantly encounter this kind of overlap of potential fields in our daily life. For example, the effect of latitude on the value of the free fall acceleration of a body above the earth's surface is explained by the imposition of the earth's gravitational field of the potential field of its rotation around its axis. In the paper an inertioid with an idealized engine, which creates a constant driving (traction) force directed towards the movement has been investigated. As a result of the study, the equations of the translational motion of a machine with an ideal inertial engine were obtained, an expression for calculating its maximum speed was determined, and the maximum required engine power for the movement of a machine with an ideal inertial engine was determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call