Abstract

최근 궤적 정보를 이용한 많은 연구들이 진행되고 있으나, 이들 대부분의 연구는 유클리드 공간 내의 궤적들을 대상으로 하고 있다. 그러나 실제 응용에서 대부분의 이동 객체들은 도로 네트워크 공간상에 존재하므로, 유클리드 공간을 대상으로 한 연구들을 도로 네트워크 공간에 적용시키는 것은 적합하지 않다. 본 논문에서는 도로 네트워크 내 이동 객체들의 대용량 궤적 정보를 대상으로 하는 효과적인 클러스터링 기법에 대하여 논한다. 이를 위하여 우선 본 논문에서는 궤적을 각 이동 객체가 시간에 따라 지나온 도로 세그먼트들의 연속으로 정의한다. 다음, 도로 세그먼트들의 길이와 식별자 정보를 이용한 새로운 유사도 측정 함수를 제안하고, 이를 이용하여 측정된 궤적간의 유사도 정보를 기반으로 FastMap과 계층 클러스터링(hierarchical clustering)기법을 이용하여 전체 궤적들을 클러스터링하는 방식을 제안한다. 또한, 본 논문에서는 실제 응용에서 대부분의 이동 객체는 최단 거리를 이용하여 움직인다는 특성을 반영한 새로운 궤적 생성 기법을 제안하고, 이렇게 생성된 궤적 데이터를 이용하여 제안된 클러스터링 기법에 대한 다양한 성능 평가 결과를 보인다. 실험 결과에 따르면 제안된 기법은 사람에 의하여 유사 궤적들을 클러스터링한 결과와 비교하여 95%이상의 높은 정확도를 보였다. Recently, there have been many research efforts proposed on trajectory information. Most of them mainly focus their attention on those objects moving in Euclidean space. Many real-world applications such as telematics, however, deal with objects that move only over road networks, which are highly restricted for movement. Thus, the existing methods targeting Euclidean space cannot be directly applied to the road network space. This paper proposes a new clustering scheme for a large volume of trajectory information of objects moving over road networks. To the end, we first define a trajectory on a road network as a sequence of road segments a moving object has passed by. Next, we propose a similarity measurement scheme that judges the degree of similarity by considering the total length of matched road segments. Based on such similarity measurement, we propose a new clustering algorithm for trajectories by modifying and adjusting the FastMap and hierarchical clustering schemes. To evaluate the performance of the proposed clustering scheme, we also develop a trajectory generator considering the observation that most objects tend to move from the starting point to the destination point along their shortest path, and perform a variety of experiments using the trajectories thus generated. The performance result shows that our scheme has the accuracy of over 95% in comparison with that judged by human beings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.