Abstract

The retrieved documents have to be transformed into proper data structure for the clustering algorithms of statistics and machine learning. A popular data structure for document clustering is document-term matrix. This matrix has the occurred frequency value of a term in each document. There is a sparsity problem in this matrix because most frequencies of the matrix are 0 values. This problem affects the clustering performance. The sparseness of document-term matrix decreases the performance of clustering result. So, this research uses the factor score by factor analysis to solve the sparsity problem in document clustering. The document-term matrix is transformed to document-factor score matrix using factor scores in this paper. Also, the document-factor score matrix is used as input data for document clustering. To compare the clustering performances between document-term matrix and document-factor score matrix, this research applies two typed matrices to self organizing map (SOM) clustering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.