Abstract

Test-fires to determine fire-extinguishers’ efficiency for extinguishing B class fires are conducted by operators equipped with working clothes, which does not comply with the requirements of physical modelling. This is why the ranks of extinguished modelled seats are significantly overestimated. The quantitative results of fire seats’ extinguishing can be comparatively evaluated in accordance with the value of specific flow rate of a fire-extinguishing agent. As it was detected, the specific flow rate of a fire-extinguishing agent does not actually depend on the rank of modelled fire seat when extinguished by an operator wearing thermal-protective clothes. At the same time, it is increasing along with the expansion of the fire zone scale in case the fire is extinguished without special protective clothes. Consequently, to increase the fire-extinguisher’s efficiency data reliability, the certifying tests should be conducted in conditions close to the real application conditions when the first person to firefight is not equipped with such special protective clothes. The experimental studies to determine the specific flow rate of a fire-extinguishing agent used modelled fire seats of various ranks. The analysis of results showed that the fire-extinguishers ensuring generation of drops of prevailing size more than 0,5 mm are required to extinguish the modelled sire seats. The degree of increasing flow rate for the fire-extinguishing agent to eliminate a fire and observation of a safe distance from the flame for an operator are conditioned by the scale of fire zone and affect the specific flow rate of agent required to ensure stable fire-extinguishing. Based on the results of extinguishing the fire seats «34В» or «55В», it is demonstrated that via using a correction factor it is possible, assuming an acceptable error, to evaluate the flow rate of fire-extinguishing agent to extinguish a modelled fire seat of any rank.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.