Abstract

Properties of oil and petroleum products largely depend on the fractional and chemical composition, on the quantitative content of different components in them, their qualitative characteristics, as well as on the dispersed composition of the oil system. Examples of oil dispersed systems are given in accordance with their classification. The dispersed phase and its structure are considered on the basis of classical concepts as a complex structural unit consisting of a nuclear and layers surrounding it. The dispersion degree is defined by the forces of intermolecular interaction between the nucleus and layers of a complex structural unit, as well as between the layers. A great contribution to forming and stability of a complex structural unit is made by bonds based on spin-spin and spin-polarized interactions. The diamagnetic components of the system form a dispersion environment. The greater a dispersion, the stronger the molecular kinetic factors become, the more intensive the diffusion processes are, the sedimentation stability increases, and the physico-chemical processes at the phase boundary accelerate. Therefore, dispersion is one of the most important factors of oil dispersed systems that determine their properties (viscosity, flash and solidification temperatures, fractional composition, density). The study of changes in the dispersion of the system under various kinds of influences, determined by the size of the average diameter of the particles of the dispersed phase, makes it possible to identify the most favorable conditions for the implementation of technological processes during transportation, storage, processing, and ensuring environmental safety. The proposed photoelectrocolorimetric method for determining 
 a mean diameter of particles of the dispersed phase of dark and viscous petroleum products differs from the well-known method in that it is carried out without diluting the sample, which could distort its dispersed composition. Besides, the sample optical density is determined in a thin fixed layer of a petroleum product due to a hard insert between the slides. The analysis methodology is described including a description of the device, a sequence of preparation and measurement, as well as processing of the results obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call