Abstract

The subject matter of the article is the methods of automatic clustering of remote sensing data under conditions of a priori uncertainty regarding the number of observed object classes and the statistical characteristics of the signatures of classes. The aim is to develop a method for approximating multimodal empirical distributions of observational data to construct decision rules for pixel-by-pixel statistical classification procedures, as well as to investigate the effectiveness of this method for automatically classifying objects on synthesized and real images. The tasks to be solved are: to develop and implement a procedure for splitting a mixture of basic distributions, while ensuring the following requirements: the absence of a preliminary data analysis stage in order to select optimal initial approximations; a good convergence of the method and the ability to automatically refine the list of classes by combining indistinguishable or poorly distinguishable components of the mixture into a single cluster; to synthesize test images with a specified number of objects and known data distributions for each object; to evaluate the effectiveness of the developed method for automatic classification by the criterion of the probability of correct recognition; to evaluate the results of automatic clustering of real images. The methods used are methods of stochastic simulation, methods of approximation of empirical distributions, statistical methods of recognition, methods of probability theory and mathematical statistics. The following results have been obtained. A method for automatic splitting of a mixture of Gaussian distributions to construct decision thresholds according to the maximal a posteriori probability criterion was proposed. The results of the automatic forming the list of classes and their probabilistic descriptions, as well as the results of the clustering both test images and satellite ones are given. It is shown that the developed method is quite effective and can be used to determine the number of objects’ classes as well as their stochastic characteristics’ mathematical description for pattern recognition tasks and cluster analysis. Conclusions. The scientific novelty of the results obtained is that the proposed approach makes it possible directly during the “unsupervised” training procedure to evaluate the distinguishability of classes and exclude indistinguishable objects from the list of classes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call