Abstract
Emotion recognition is an important technology in the filed of human-machine interface. To apply speech technology to emotion recognition, this study aims to establish a relationship between emotional groups and their corresponding voice characteristics by investigating various speech features. The speech features related to speech source and vocal tract filter are included. Experimental results show that statistically significant speech parameters for classifying the emotional groups are mainly related to speech sources such as jitter, shimmer, F0 (F0_min, F0_max, F0_mean, F0_std), harmonic parameters (H1, H2, HNR05, HNR15, HNR25, HNR35), and SPI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.