Abstract
PURPOSES: The scaling of a concrete surface caused by the combined effects of frost and de-icing salts is one of the main reasons for the need to repair transportation infrastructures in cold-climate regions. This study describes the results of attempts to determine the scaling resistance of concrete incorporating mineral admixtures such as fly ash, GGBFS, and silica fume, and subjected to the actions of frost and salt. METHODS : Conventionally, to evaluate the fundamental properties of concrete, flexural and compressive strength measurements are regularly performed. Based on the ASTM C 672 standard, concrete is subjected to 2%, 4%, and 8% salt solutions along with repeated sets of 50 freeze/thaw cycles, and the scaling resistance was evaluated based on the mass of the scale and a visual examination. RESULTS : It was observed that silica fume is very effective in enhancing the scaling resistance of concrete. Meanwhile, concrete incorporating GGBFS exhibited poor resistance to scaling, especially in the first ten freeze/thaw cycles. However, fly ash concrete generally exhibited the maximum amount of damage as a result of the frost-salt attack, regardless of the concentrations of the solutions. CONCLUSIONS: It can be concluded that the scaling resistance of concrete is highly dependent on the type of the mineral admixture used in the concrete. Therefore, to provide a durable concrete pavement for use in cold-climate regions, the selection of a suitable binder is essential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.