Abstract
A Blog provides commentary, news, or content on a particular subject. The important part of many blogs is interactive format. Sometimes, there is a heated debate on a topic and any article becomes a political or sociological issue. In this paper, we proposed a method to predict the popularity of an article in advance. First, we used hit count as a factor to predict the popularity of an article. We defined the saturation point and derived a model to predict the hit count of the saturation point by a correlation coefficient of the early hit count and hit count of the saturation point. Finally, we predicted the virtual temperature of an article using 4 types(explosive, hot, warm, cold). We can predict the virtual temperature of Internet discussion articles using the hit count of the saturation point with more than 70% accuracy, exploiting only the first 30 minutes` hit count. In the hot, warm, and cold categories, we can predict more than 86% accuracy from 30 minutes` hit count and more than 90% accuracy from 70 minutes` hit count.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.