Abstract

The complex capacitance analysis was performed in order to examine the potential-dependent EDLC characteristics of porous carbon electrodes. The imaginary capacitance profiles were theoretically derived for a cylindrical pore and further extended to multiple pore systems. Two important electrochemical parameters in EDLC can be estimated from the peak-shaped imaginary capacitance plots: total capacitance from the peak area and from the peak position. Using this method, the variation of capacitance and ion conductivity in pores can be traced as a function of electric potential. The electrochemical impedance spectroscopy was recorded on the mesoporous carbon electrode as a function of electric potential and analyzed by complex capacitance method. The capacitance values obtained from the peak area showed a maximum at 0.3V (vs. SCE), which was in accordance with cyclic voltammetry result. The ionic conductivity in pores calculated from the peak position showed a maximum at 0.2 V (vs. SCE), then decreased with an increase in potential. This behavior seems due to the enhanced electrostatic interaction between ion and surface charge that becomes enriched at more positive potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call