Abstract

Vehicle vibrations arise from engine and road surface excitations. The engine mount system of a passenger car sustains the engine weight and insulates the excitation force from the engine system. The dynamic properties of viscoelastic material used for the vehicle engine mounts have large variation due to environmental factors such as environmental temperature and humidity etc. The present study aims to investigate the variability of dynamic characteristics in rubber engine mounts considering both environmental temperature change and material model errors/uncertainty. The engine mounts for a passenger car were modeled using finite element method. Then, the dynamic stiffness variability of the engine mounts were estimated using Monte Carlo simulation method. In order to estimate the variations in the storage and loss moduli of the viscoelastic materials, the material properties of the synthetic rubber were expressed as a fractional-derivative model. Next, in order to simulate the uncertainty propagation of the dynamic stiffness for the engine mounts due to the storage and loss moduli variations, the Monte Carlo simulation was used. The Monte Carlo simulation results showed large variation of the engine-mount stiffness along frequency axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.