Abstract

The article presents the results of modeling the dynamic response of the tandem rotors of ice-class vessel electric propulsion motors under extreme operating conditions. The loading of rotors by torques in combination with vibration transmitted through the supports to the electric motors is considered as an external non-stationary action. A method for constructing a three-dimensional finite element model of the structure under study by fragmentary assembly has been developed on the basis of the ANSYS Mechanical software package. A scheme of elastic-compliant 3D-links allowing simulating the reciprocating-rotational vibrations of a tandem of rotors is presented. A test example is used to verify the proposed mechanical-mathematical model of the torsion system. Based on the calculated data, the analysis of the dynamic parameters of the tandem rotors is performed for the most unfavorable operating scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call