Abstract

Для решения задачи переноса в статье предложено использовать схему, построенную на основе линейной комбинации разностной схемы кабаре (англ. Upwind Leapfrog) и крест (англ. Standard Leapfrog) с весовыми коэффициентами, полученными в результате минимизации погрешности аппроксимации. Проведено сравнение расчетов для задачи переноса на основе предложенной схемы с результатами, полученными с использованием схемы, построенной на основе линейной комбинации схемы с центральными разностями и схемы кабаре, и двухпараметрической разностной схемы третьего порядка точности. In order to solve the transfer problem, it is proposed to use the scheme based on a linear combination of the upwind and standard leapfrog difference schemes with weighting coefficients obtained by minimizing the approximation error. The estimate of the approximation error of the proposed difference scheme shows that, for small Courant numbers, this scheme whose approximation error is $O(ch^2)$, where the constant $c$ is significantly less than unity, is preferable to use than the original upwind and standard leapfrog schemes whose approximation errors are $O(h^2)$. The numerical results for the transfer problem based on the proposed scheme are compared with the results obtained using the following schemes: (i) the scheme based on a linear combination of the standard leapfrog scheme and the upwind leapfrog sscheme and (ii) the two-parameter difference scheme of the third order of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.