Abstract
최근, 패턴분류에 온톨로지를 이용하려는 연구가 다양한 분야에서 시도되고 있다. 그러나 대부분의 이러한 연구에서는 패턴분류 관련 지식을 표현한 온톨로지지가 패턴분류 과정에서 단순히 참조되는 수준에 머물고 있다. 본 논문에서는 퍼지 규칙기반 분류기를 확장한 온톨로지 기반 퍼지 분류기를 제안한다. 이를 위해 퍼지규칙 기반 패턴분류 방법을 개념화하여 온톨로지를 구성하고, 패턴분류를 위한 온톨로지 추론 규칙을 생성한다. 그리고 IRIS 데이터집합의 패턴분류 실험을 통해 온톨로지 기반 퍼지 분류기의 타당성을 보인다. Recently, researches on ontology-based pattern classification have been tried out in many fields. However, in most of the researches, the ontology which represents the knowledge about pattern classification is just referred during the processes of the pattern classification. In this paper, we propose ontology-based fuzzy classifier for pattern classification which is extended from the fuzzy rule-based classifier In order to realize the proposed classifier, we construct an ontology by conceptualizing the method of fuzzy rule-based pattern classification and generate ontology inference rules for pattern classification. Lastly, we show the validity o) the proposed classifier through the experiment of pattern classification on the Fisher's IRIS dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Institute of Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.