Abstract

With the increasing of the penetration rate of large-scale wind farms, a reliable, highly available and cost-effective communication network is needed. As the failure of a WF communication network will significantly impact the control and real-time monitoring of wind turbines, network reliability should be considered into the WF design process. This paper analyzes the network reliability of different WF configurations for the Southwest Offshore project that is located in Korea. The WF consists of 20 WTs with a total capacity of 60 MW. In this paper, the performance is compared according to a variety of indices such as network unavailability, mean downtime and network cost. To increase the network reliability, partial protection and full protection were investigated as strategies that can overcome the impact of a single point of failure. Furthermore, the reliability performances of different network architectures are analyzed, evaluated and compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.