Abstract

The dynamic compliance characteristics of a prosthetic foot midgait are very important for natural performance in an amputee’s gait and should be in a range that provides natural, stable walking. In this study, finite element analysis (FEA) and classical laminate theory were used to examine the mechanical characteristics of a carbon-epoxy composite laminate prosthetic foot as a function of variation in the lamination composition. From this analysis, an FEM model of a prosthetic keel, made from the composite material, was developed. The lamination composition of the keel was designed for improved stiffness. The prototype product was fabricated using an autoclave. Vertical loading response tests were performed to verify the simulation model. The results of the experiments were similar to those from simulations below the loading level of the gait, suggesting use of the proposed simulation model for prosthetic keel design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.