Abstract

In this study, we investigated a learning progression focusing on 5 th to 9 th graders’ performances with dissolution and solution concepts using the construct modeling approach. We designed a construct map describing hypothetical pathways of the concept development of dissolution and solution by analyzing both National Science Curricula and related studies. A conceptions test consisting of ordered multiple-choice items was developed and administered to 826 students. A revised construct map was derived from analyses of the results based on the partial credit model, a branch of polytomous item response theory. The sequence of dissolution and solution concepts presented in the current science curriculum was found to correspond with the learning progression of the students. However, the lower anchor, the concept of the homogeneity of particles in solution, and the factors affecting solubility were not consistent with the expected levels of the construct map. After revising the construct map, we proposed a learning progression for dissolution and solution concepts with five levels: Students of level 1 (the lower anchor) recognize the particles in the solution but misunderstand various concepts; Students of level 2 understand the homogeneity of particles in solution; Students of level 3 understand solubility and the conservation of particles during dissolution; Students of level 4 partially understand the interaction between particles; and Students of level 5 (the upper anchor) understand the interaction between particles and the factors affecting solubility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call