Abstract

The problem of modeling and composing of aggregate systems is considered. The system components are described with finite automata with multiple entries and exits. The communication between automata is described with message passing over simplex communication channels. The system is described with a directed graph of links. Each node of the graph corresponds to automaton of a component and an arc corresponds to a communication channel connecting exit of one automaton with entry of another automaton. Automaton of the graph node in each state can accept multiple messages from its entries (at most one message from each entry) and send multiple messages to its exits (at most one message to each exit). Entries (exits) of the automata not connected to exits (entries) of automata are considered to be external and used for communication between the system and its environment. The automata of the system operate synchronously: on each cycle each automaton performs one transition. A transition of an automaton imposes requirements on states of all its entries and exits (messages in them are specified) and explicitly specifies subset of entries and exits through which the messages are received or sent, respectively. Synchronous communication between automata means that for each link the requirements of the automata connected with this link must conform to each other. It makes possible to describe a wider spectrum of automata behavior. For example, a priority of message receiving: if there are multiple message in the automata entries, it can receive messages with the highest priority and discard the rest of the messages. It also makes possible for the automaton to receive messages regardless of ability to simultaneously send some message to some exit. A composition of the automata of the system according to the graph of links is defined and its associativity is proved. In conclusion, the directions of future research are described.

Highlights

  • The system components are described with finite automata with multiple entries and exits

  • The communication between automata is described with message passing over simplex communication channels

  • The system is described with a directed graph of links

Read more

Summary

Введение

Большинство сложных, особенно распределённых, систем представляет собой набор взаимодействующих компонентов. При этом каждый вход (выход) каждого автомата соединён не более чем с одним выходом (входом) другого (или того же самого) автомата. В предлагаемой модели автоматы системы работают синхронно: на каждом такте каждый автомат выполняет один переход. Приоритетный приём сообщений: если на входах автомата имеется несколько сообщений, автомат может принять сообщения с наивысшим приоритетом, не принимая остальные сообщения. В разделе 3 формально определяется композиция переходов, композиция автоматов и композиция системы. Композиция системы по всем её соединениям представляет собой автомат или набор автоматов, не связанных между собой соединениями. В разделе 4 доказывается ассоциативность композиции переходов, автоматов и системы. В разделе 5 определяется дополнительная композиция автоматов, не связанных соединениями, что позволяет докомпоновать систему ровно до одного автомата. Эквивалентный исходной системе, может уже использоваться как компонент более сложных систем автоматов.

Модель
Композиция
Ассоциативность композиции
Система как компонент другой системы
Заключение

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.