Abstract
Electron transport processes in oxide superconducting heterostructures with epitaxially grown magnetic thin-film interlayers, in which the interaction of superconducting correlations and magnetic ordering occurs due to superconducting and magnetic proximity effects, have been studied experimentally. Hybrid mesa-heterostructures were prepared from thin-film bottom cuprate superconductor (S), magnetic (M) interlayer made of manganite or an antiferromagnetic cuprate, and the upper electrode made from an ordinary superconductor. When the cuprate antiferromagnetic material was replaced by a ferromagnetic manganite interlayer, the superconducting current was suppressed, although the thin magnetic film was several times thinner, 5 nm, and the temperature was lowered to 0.3 K. At low temperatures dependences of differential resistance vs. voltage for mesa-heterostructures with manganite interlayer featured mini-gap low-energy states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Radioelectronics. Nanosystems. Information Technologies.
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.