Abstract

The widespread use of hydromounts as universal means of vibration protection is constrained by a number of factors: the narrow frequency range and the lack of unified calculation methods. The first problem can be solved by integrating a magnetorheological transformer, which is an electromagnet that controls the viscosity of the magnetorheological fluid in the hydraulic channels by changing the magnetic field. To overcome the second problem, calculation methods for hydromounts with magnetorheological control were developed. The physical model of the hydromount was obtained using the well-known Kwok algebraic model. In describing the shear deformation processes of a magnetorheological fluid in the hydromount throttle channel, the Shvedov-Bingham model for nonlinear plastic media was applied. Using the methods developed by the authors, prototypes of magnetorheological hydromounts were developed and manufactured. The results of load and vibration tests confirmed the adequacy of the proposed methods. The experimental study of frequency responses showed the possibility of their “detuning” from the resonance modes and the high efficiency of the hydromounts in the above-resonant region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call