Abstract

Using the extremophilic yeast of Yarrowia lipolytica, a new model has been proposed to study the protective properties of stilbene polyphenols, namely resveratrol and pinosylvin, under heat shock. It was shown that a short-term thermal exposure of yeast cells (55 C, 25 min) led to a 40% decrease in the colony-forming ability of the population, a fivefold decrease in the respiration rate, and a growth of cyanide resistance and catalase activity, which indicated the adaptive yeast response to heat stress. Under these conditions, natural biologically active stilbenes, resveratrol and pinosylvin, at a concentration of 10 μM each increased yeast survival by 28% and 13%, respectively. In heat shock, resveratrol additionally raised catalase activity, while pinosylvin increased the cell respiration rate and decreased cyanide resistance and catalase activity. The results obtained indicate that resveratrol acts as a mild pro-oxidant inducing antioxidant protection during the adaptive response of the yeast to heat shock. Unlike resveratrol, pinosylvin increases cell survival stabilizing mitochondrial function and preserving the ATP-generating component of respiration. Yarrowia lipolytica yeast, polyphenols, stilbenoids, resveratrol, pinosylvin, cellular respiratory activity, heat shock, superoxide dismutase, catalase

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call