Abstract

Steel plates are widely used in many manufacturing areas such as ship and bridge construction industries and are fabricated by different forming processes. Steel plates can have various shape defects, such as curl or camber. Roller leveling reduces the magnitude of the residual stress by using small amounts of reverse bending via an appropriate arrangement of the rolls and the associated plastic deformation in the steel plate. In this study a model for the residual stress after roller leveling is developed. In order to simplify the formulation, a plane-strain condition is assumed and the stress in the thickness direction is assumed to be negligible. The camber deformation in a real sized plate are measured and compared with the prediction values from the model to validate the accuracy of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call