Abstract
The content and distribution of water vapor in the Earth’s atmosphere are related to various weather conditions and climatic processes, and are therefore important for understanding many meteorological phenomena. At the current stage of development and formation of Global Navigation Satellite Systems (GNSS), the distribution of water vapor content can be established using such observations from GNSS tomography, which, in turn, allows to study changes in the vertical profile of water vapor content in the Earth’s troposphere. In troposphere GNSS tomography, accurate information on the distribution of water vapor is obtained using integrated measurements, such as the water vapor content value in the slant direction (Slant Water Vapor, SWV). The essence of the problem of troposphere GNSS tomography is the solution of equations system, the number of which is limited by the number of satellites involved in observations. In this case, the functional relationship between observations and unknowns, in the pathways of GNSS signals through the troposphere, must be known in sufficient numbers. However, today there is a problem of lack of such information, which leads to the main problem of the troposphere GNSS-tomography method – overcoming the deficit of rank in the inversion of the original equation. This problem can be solved by increasing the number of satellite signals in a wide range of positions. The purpose of this work is to maximize the use ofGNSS signals inmodeling tomographic solutions based on data simulation. Method. Based on the developed method of multi-GNSS observations data processing by the PPP method, an algorithm of the procedure of simulation of additional satellites in tomographic modeling in order to overcome the problems of rank deficit is proposed. Results. The results of application of the data simulation procedure for the vertical profile of water vapor content in the Earth’s troposphere are presented based on the results of processingGNSS observations at the GANP station (Poprad, Slovakia) in the period from 31.05.2019 to 1.06.2019. Scientific novelty and practical significance. For the first time, an algorithm for the procedure of additional satellites simulation was proposed in order to overcome the problems of rank deficit in the tomographic modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Modern achievements of geodesic science and industry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.