Abstract

The article considers solving the problem of object recognition of intersected classes using fuzzy inference systems and neural networks. New multi-output network of Wang-Mendel is compared to a new architecture of neural fuzzy production network based on the model of Mamdani-Zadeh. Learning results of these models are given in the interpretation of logical operations provided by Godel, Goguen and Lukasiewicz algebras. New Wang-Mendel’s network can use minimum or sum-based formula as T-norm operation in accordance with an appropriate algebra rather than the standard multiplication only. Mamdani-Zadeh's network is designed as a cascade of T-norm, implication and S-norm operations defined by selected algebra. Moreover defuzzification layer is not presented in Mamdani-Zadeh’s network. Both networks have several outputs in accordance with the number of subject area classes what differs them from the basic realizations. Compliance degrees of an input vector to defined classes are formed at the network outputs. To compare the models the standard Fisher’s irises and Italian wines classification problems were used. This article presents the results calculated by training the networks by backpropagation algorithm. Classification error analysis shows that the use of these algebras as interpreting fuzzy logic operations proposed in this paper can reduce the classification error for both multi-output network of Wang-Mendel and a new network of Mamdani-Zadeh. The best learning results are shown by Godel algebra, but Lukasiewicz algebra demonstrates better generalizing properties while testing, what leads to a less number of classification errors.

Highlights

  • Что использование данных алгебр в качестве интерпретации нечётких логических операций, предложенное в статье, позволяет уменьшить погрешность классификации как для многовыходовой сети Ванга Менделя, так и для новой сети Мамдани Заде

  • Зависимость относительной погрешности обучения от количества правил и используемой алгебры для задачи классификации ирисов [Dependence of the learning relative error on the number of rules and algebra used for classification of the irises]

  • Зависимость относительной погрешности обучения от количества правил и используемой алгебры для задачи классификации вин [Dependence of the learning relative error on the number of rules and algebra used for classification of the wines]

Read more

Summary

Introduction

Что использование данных алгебр в качестве интерпретации нечётких логических операций, предложенное в статье, позволяет уменьшить погрешность классификации как для многовыходовой сети Ванга Менделя, так и для новой сети Мамдани Заде. В данной статье предлагается новая архитектура нейронной нечёткой продукционной сети, основанной на модели Мамдани Заде, и исследуется решение задачи классификации для предложенной нечёткой сети и сети Ванга Менделя с несколькими выходами при интерпретациях нечётких логических операций в соответствии в алгебрами Гёделя, Гогена и Лукашевича.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.