Abstract

The electro-mechanical properties of a ferroelectric film of barium strontium titanate (BST) film located on a silicon substrate depend on applied external strain. A significant dependence is observed for concentrations close to values, where a phase transition for the ferroelectric film occurs. A model of single-crystal BST film near the phase transition under uniaxial strain is studied by the thermodynamic theory of phase transitions. The material properties of the film obtained by the model are used for numerical study of the excitation of Rayleigh’ acoustic waves on the surface of the film-substrate heterostructure. Shifting the extrema of S-parameters, characterizing the efficiency of excitation of surface acoustic waves, is shown under the applied strain. The change of S-parameters for the first three resonances determined principally by the geometry of the interdigital electrodes is presented. The largest shift of resonant frequency is observed in a case of the second resonance that corresponds to Sezava wave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call