Abstract

The effect of considering correlated errors in AMV (Atmospheric Motion Vectors) satellite observations of wind in the local ensemble transform Kalman filter data assimilation system is studied. It is customary to use a diagonal covariance matrix of errors in observations taking part in assimilation. When assimilating satellite data with correlated errors, the data are thinned, and the values of diagonal elements of the error covariance matrix are often overestimated. This is accompanied by the loss of useful information about the correlation between the errors. The present study uses a different method: the elements of the error covariance matrix for AMV satellite observations are simulated using a second-order autoregressive function. It is shown that such approach reduces the root-mean-square error in initial data for a numerical weather prediction model, in particular on small scales, and improves the forecast quality. It is found that the application of the non-diagonal AMV observation error covariance matrix increases the accuracy of analysis and forecast fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call