Abstract

Internet antennas-busters are one of the most common antennas of suburban subscriber stations of broadband radio access systems. In many ways, the speed of information transmission in such systems limits the signal level provided by the base station in the entire operating band of the Internet signal. Since the antenna located on the wall of the house is stationary, it can be made relatively large, which allows you to implement a higher gain and accordingly increase the signal level on the router. At the same time, the market for such antennas is quite saturated with a wide variety of antenna designs, but due to the increase in the number of people working in remote mode and the expected transition to mobile communication systems 5G, it still continues to develop rapidly. The paper proposes a new design of the transceiver mobile Internet antenna-buster, whose main advantage is absolute imperceptibility when installed outdoors. We consider a planar in-phase 8-element antenna array installed on the window glass of a suburban building. As the individual emitters of the lattice are encouraged to use a planar wave dipoles. A feeding scheme for the antenna array on flat two-wire lines has been developed, which provides in-phase and almost equal amplitude excitation of all array elements of the array. Calculations of antenna radiation patterns in the range of 1700-2700 MHz are given. It is shown that the developed antenna has a gain of 8-9 dB in the range of 1700-2100 MHz and 10-12 dB in the range of 2400-2700 MHz. These values are practically not inferior to similar indicators of known collinear antenna arrays and in the upper part of the work range, they have a gain of 1-2 dB compared to their analogs. A planar array matching scheme has been developed that provides a VSWR of about 2.5 in the range of 1700-2100 MHz and no worse than 2 in the range of 2400-2700 MHz. Variants of constructing planar antenna arrays with broadband emitters that provide similar matching without the use of additional matching devices are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.