Abstract
The laboratory testbed of a digital simplex radio-relay system of the terahertz range has been studied for the first time in practical terms. It consists of the receiver and transmitter parts of 130÷134 GHz frequency range and a digital modem with a channel data transmission of up to 1200 Mbps for a communication point-to-point distance under normal conditions within 1 km. It is shown that the proposed telecommunication system, which implements the concept of the creation of software-defined radio systems based on Wi-Fi technology, can be highly productive in the next generation mobile communication networks providing the appropriate transmission speeds, reliability, and security. It is studied the parameters of multichannel digital TV signal DVB-C standard when it is transmitted through the testbed of the transmitter and receiver parts of 130 GHz band. The results of the research showed that the application of lower part of terahertz frequency band (130 GHz) with a bandwidth of 24 MHz allows the transmission of three DVB-C television broadcasting channels with a total transport speed of 125 Mbit/s with a high subjective quality of TV programs. The results of the simulation of impulse ultrawideband (IR-UWB) signal transmission by the wireless link of terahertz band are presented. The results of researches of changes of IR-UWB Gaussian monocycle in the transmitter part and its reception by the receiver part of 130.4÷131.5 GHz terahertz band are presented for the first time. On the basis of the results of the research, the requirements for parameters of terahertz wireless link are formulated to ensure acceptable quality of ultrawideband impulse signals receiving. Development of the transmitter and receiver parts of radio relay system of the terahertz range has no direct current analogs in Ukraine. It can provide a significant breakthrough in the development of the telecommunications industry. The obtained research results will also contribute to the development of telecommunications-related industries, in particular: radio astronomy, inter-satellite communication, radar systems, medicine, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.