Abstract
무선네트워크와 각종 감지 센서로 통합된 스마트 홈은 우리의 삶의 일부분으로 자리 잡을 것이다. 이 논문은 사용자의 선호도에 근거하여 자동적인 흠 서비스를 제공하는 상황인식 미들웨어에 대하여 설명한다. 상황인식 미들웨어는 사용자의 선호도에 대한 학습과 예측 알고리즘을 수행하기 위하여 6가지의 기본 데이터를 이용하고 제시되는 6가지의 기본 데이터는 맥박, 체온, 얼굴표정, 실내온도, 시간, 사용자 위치이다. 6개의 데이터는 컨텍스트 모델을 구성하고 컨텍스트 매니저 모듈에 의해 기본 데이터로 사용된다. 사용자에 의해서 선택되어진 컨텐츠에 대한 정보를 유지하는 로그매니저가 제시되고 사용자에게 적절한 홈서비스를 제공하기 위해 신경망에 근거한 학습 및 예측 알고리즘을 제시한다. 실험결과는 개인의 선호도 패턴이 연구된 컨텍스트 모델에 의해서 효과적으로 예측되고 평가되는 것을 보여준다. Smart homes integrated with sensors, actuators, wireless networks and context-aware middleware will soon become part of our daily life. This paper describes a context-aware middleware providing an automatic home service based on a user's preference. The context-aware middle-ware utilizes 6 basic data for learning and predicting the user's preference on the multimedia content : the pulse, the body temperature, the facial expression, the room temperature, the time, and the location. The six data sets construct the context model and are used by the context manager module. The log manager module maintains history information for multimedia content chosen by the user. The user-pattern learning and pre-dicting module based on a neural network predicts the proper home service for the user. The testing results show that the pattern of an in-dividual's preferences can be effectively evaluated and predicted by adopting the proposed context model.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.