Abstract

A technique is proposed for determining the dielectric properties of water in a nanoscale layer at frequencies corresponding to orientation polarization. The method is based on the registration of the change in the velocity of elastic surface waves resulting from the interaction with a thin layer of a liquid. It was assumed that the dispersion of the dielectric permittivity of water in the thin layer is described by the Debye's equations of dielectric relaxation. In order to demonstrate the capabilities of the proposed method, the values of the real part of the dielectric permittivity of adsorbed water at various frequencies f (43.2; 64.8; 108; 129.6, 194.4, 302.4, 388.8 MHz) were experimentally determined at a fixed thickness of the adsorption layer h (2.2; 2.8; 3.7; 13 nm). The determination of the value of the imaginary part of the dielectric permittivity as well as the calculation of the time of dielectric relaxation, static, and high-frequency dielectric permittivities was enabled by the use of the experimental values and Debye's equations. A comparison was made between the dielectric properties of adsorbed water and those of water in the bulk liquid phase. The high-frequency dielectric permittivity of adsorbed water was found to be lower than that of water in the bulk liquid phase, while the static dielectric permittivity was significantly higher. The dielectric relaxation time of adsorbed water is dependent on the thickness of the adsorption layer and is significantly longer than that of water in the bulk liquid phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.