Abstract

The band-width of disk drive servo system is rapidly increasing for the robustness to external disturbance as the track density is increasing. The increase of the band-width may cause mechanical resonance of an actuator. In disk drive servo system, a notch filter is usually used to suppress the mechanical resonance of the actuator. However, the resonance frequency differs from drive to drive because of manufacturing tolerance and varies with temperature even within a single drive. The variation of resonance frequency degrades the suppression performance of the notch filter. In this paper, we present an adaptive digital notch filter that identifies the resonance frequency of the disk drive servo actutaor precisely and adjusts automatically its center frequency. For this, we design an adaptive FIR digital filter for the estimation of the resonance frequency. The estimation filter identifies the resonance frequency adaptively using the output signal generated from the servo system, which is excited with an excitation signal including all the expected resonance frequency components. We prove mathematically the convergence of the resonance frequency estimation filter. Furthermore, in order to demonstrate the practical use of our work, we present some experimental results using a commercially available disk drive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.