Abstract
Problem of physiological functions stability is the important part of the theoretical physiology. P.K.Anohin´s basic ideas - the theory of functional systems and systemic approach to study of physiological functions have begun the development of theoretical physiology and mathematical modeling in biomedicine. In this paper methodological aspects of using of various biomodels for an estimation of stability of physiological functions are considered. Experimental, genetic, mathematical and computer biomodels are described. Practical techniques of an estimation of stability are illustrated on an example of stability of cardiovascular functions to stressor loads. Examples of different experimental models of stress and methods of estimation of stressor loads influence on cardiac electrical stability are described. Cardiac electrical stability was estimated by thresholds for ventricular fibrillation. Besides experimental, examples of mathematical and computer methods of an estimation of stability of cardiovascular functions to stressor loads are presented. Mathematical model that enables to investigate the stability of heart rate dynamics to stressor loads is based on quantitative characteristics of impulse conduction in heart conducting system. The model describes the phenomena observed at gradual increase of stressor intensity. It was shown the existence of a critical point of transition of heart rate dynamics from linear to chaotic mode. The results show that the greatest stability is notable for the linear regime. For this regime small errors in values of initial conditions can’t sharply change the initial dynamics of RR intervals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.