Abstract

다차원 데이터 집합에서 서로 지배되지 않는 데이터로 구성된 부분 집합을 스카이라인이라고 한다. 스카이라인 계산은 다차원 데이터를 대상으로 한 의사결정에 유용한 연산이다. 그러나 스카이라인이 지나치게 큰 경우 이를 의사결정에 활용하기 어려울 수 있다. 본 연구에서는 사용자가 제시하는 원점의 이동, 원점으로부터의 각도와 거리 정보를 반영하여 스카이라인의 일부를 효율적으로 구하는 방법을 모색하였다. 제안한 알고리즘은 스카이라인에 속하지 않는 데이터를 신속하게 제거해가며, 사용자의 요구를 점진적으로 반영할 수 있다는 특징을 갖는다. 알고리즘의 효율성은 실험을 통해 검증하였다. The skyline of a multi-dimensional data set is a subset that consists of the data that are not dominated by other members of the set. Skyline computation can be very useful for decision making for multi-dimensional data set. However, in case that the skyline is very large, it may not be much useful for decision making. In this paper, we propose an algorithm for computing a part of the skyline considering location restrictions that the user provides, such as origin movement, degree ranges and/or distances from the origin. The algorithm eliminates noncandidate data rapidly, and returns in order the skyline points that satisfy the user's requests. We show that the algorithm is efficient by experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.