Abstract

Wind load and flow field of a drillship with respect to various super structures were experimentally investigated in KARI 1m-wide wind tunnel with an atmospheric boundary layer simulation. Six-component external balance and Particle image velocimetry technique were used to measure wind load and velocity vectors in the flow-field around the model respectively. The experimental model was an imaginary shaped drillship with an approximated model which has 1/640 scale compared with recent typical drillships. The test Reynolds number based on the overall length was about 1.5&#xD7;10<sup>6</sup>. It was found that dominant factors influencing on ship wind load are cabin shape and cabin height. Round cabin has smaller axial wind load and narrow boundary layer around the ship than rectangular one, but its yawing moment at certain angles becomes higher. Low cabin height also show positive effects on axial wind load too. Hull shape and forecastle shape show relatively small influences on wind loads except for slight changes around &#xB1;45&#xB0; wind directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.