Abstract

Following the 2002 World-Cup held in Korea, studies have been actively conducted on plans to utilize all-weather stadiums of fine figures, where large-scale spaces are available for various utilizations. In Japan, dome-type stadiums have been built and are utilizing across the whole nation not only for sports events but also variety of other large-scale events. PTFE(poly tetra fluoro ethylene) is one of the membrane material mainly used for the outer ceiling surface of membrane structures. However, there has not been enough research on the acoustical properties of PTFE membrane material which has been widely used in the multi-purpose stadiums. In this study, air permeability values and sound absorption coefficient of PTFE membrane materials were measured and evaluated in the gymnasium. From the results of measurements of sound absorption coefficient and air permeability of inner membrane materials, it was found that the sound absorption coefficient was good in the air permeability range of <TEX>$5{\sim}15\;cc/cm^2/s$</TEX>. Also the relation ship between air permeability and sound absorption coefficient was very high and the sound absorption coefficient was the highest in the range of <TEX>$6{\sim}9\;cc/cm^2/s$</TEX>. Secondly, an analysis on the measurements sound absorption characteristics of inner membrane material reveals that the overall sound absorption coefficient was stabilized(higher than 0.5 throughout the whole frequency bands) when the air space behind the membrane material was deeper than 600 mm. When PTFE sound absorptive membrane material was installed in the ceiling of gymnasium, it was confirmed that sound absorptive membrane material can reduce reverberation and increase speech intelligibility in the gymnasium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.