Abstract

The problem of assessing steels durability, their resistance to brittle fracture in the structures used in various branches of industry, remains relevant at the development of the new equipment and control of the old equipment. Standard strength calculations do not give a complete picture of the ability of steels due to their physical and mechanical properties to resist the formation and further development of defects and cracks under the action of actual stresses. The correct choice of a structural material for technical devices operating at low temperatures, knowledge of its characteristics of resistance to brittle fracture, understanding of brittle fracture mechanism at low temperatures and research in this area are of great importance. Since 1980s, JSC IrkutskNIIkhimmash systematically conducts the research works related to impact strength characteristics. These works are carried out in connection with the need for assessing the resistance to brittle fracture of metal of the equipment for storing oil products, vessels and pipelines, drill pipes and tubing, etc. As a result of many years of research, the authors accumulated significant experimental material in the form of temperature dependences of impact strength - both for the material of various types of blanks (sheets, pipes, forgings) in the state of delivery, and for the metal of technical devices elements after their operation of various duration. The main objective of the article is to assist specialists in establishing the correct choice of steel for the new or old structures in terms of their resistance to brittle fracture without conducting special studies. Specialists can select the closest steel analogue (on chemical composition, mechanical properties, and the type of product without making cuts from the structure or blanks for additional research), and set the numerical value of the impact strength, critical temperature of brittleness and the stress intensity factor for any temperature in the range from –40 to 20° С in order to use them in further calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.