Abstract

This paper suggests a hand gesture recognition technology to control smart devices using multiple Doppler radars and a support vector machine(SVM), which is one of the machine learning algorithms. Whereas single Doppler radar can recognize only simple hand gestures, multiple Doppler radar can recognize various and complex hand gestures by using various Doppler patterns as a function of time and each device. In addition, machine learning technology can enhance recognition accuracy. In order to determine the feasibility of the suggested technology, we implemented a test-bed using two Doppler radars, NI DAQ USB-6008, and MATLAB. Using this test-bed, we can successfully classify four hand gestures, which are Push, Pull, Right Slide, and Left Slide. Applying SVM machine learning algorithm, it was confirmed the high accuracy of the hand gesture recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.